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Abstract

In a pilot-wave theory, an individual closed system is described by a
wavefunction ψ(q) and configuration q. The evolution of the wavefunction
and configuration are respectively determined by the Schrödinger and guidance
equations. The guidance equation states that the velocity field for the
configuration is given by the quantum current divided by the density |ψ(q)|2.
We present the currents and associated guidance equations for any Hamiltonian
given by a differential operator. These are derived directly from the Schrödinger
equation, and also as Noether currents arising from a global phase symmetry
associated with the wavefunction in configuration space.

PACS number: 03.65.Ta

1. Introduction

In the pilot-wave theory of de Broglie and Bohm [1–7], an individual closed system of
nonrelativistic particles is described by a wavefunction ψ(x1, . . . , xN, t), which satisfies the
nonrelativistic Schrödinger equation

ih̄∂tψ(x1, . . . , xN, t) =
(

−
N∑

k=1

h̄2

2mk

∇2
k + V (x1, . . . , xN)

)
ψ(x1, . . . , xN, t), (1)

and by n particle positions x1, . . . , xn, for which the possible trajectories are solutions of the
guidance equations

dxk

dt
= h̄

2imk|ψ |2 (ψ∗∇kψ − ψ∇kψ
∗) = 1

mk

∇kS, (2)

4 Present address: Currently postdoctoral fellow FWO–Flanders.
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where ψ = |ψ | exp(iS/h̄). Here, ψ is regarded as an objective physical field in configuration
space, guiding the motion of an individual system.

The ‘density’ |ψ |2 is preserved by the particle flow, in the sense that if, over an
ensemble of systems with the same wavefunction ψ , the configurations have the ‘quantum
equilibrium’ distribution |ψ(x1, . . . , xN, t0)|2 at time t0, then they will have the distribution
|ψ(x1, . . . , xN, t)|2 at any time t. This is a consequence of the continuity equation for |ψ |2,

∂t |ψ |2 +
N∑

k=1

∇k ·
(∇kS

mk

|ψ |2
)

= 0, (3)

which itself follows from the Schrödinger equation5.
De Broglie arrived at the guidance equation (2), in the 1920s, by combining the variational

principles of Maupertuis and Fermat. Bohm, on the other hand, who rediscovered de Broglie’s
theory in the early 1950s, proposed an acceleration-based equation of motion for the particles
(Newton’s equation of motion with a ‘quantum potential’) instead of the velocity-based
guidance equation. In Bohm’s view, the guidance equation is regarded as a mere constraint
on the initial momenta, a constraint that can in principle be relaxed [3]. Whereas, in de
Broglie’s view, the guidance equation is regarded as the fundamental law of motion. (For a
full discussion, see [2].)

However, de Broglie’s velocity field as given by the right-hand side of (2) cannot be
correct in general. For while the resulting flow preserves |ψ |2 for standard Hamiltonians of
the form appearing in (1), it will not preserve |ψ |2 for Hamiltonians of an arbitrary form.
For more general Hamiltonians, an acceptable guidance equation may be derived from the
requirement that it preserves the density |ψ |2 (a method that is in fact often used), since this
property plays a key role in showing that in equilibrium the theory reproduces the standard
quantum predictions. Given a continuity equation for a density |ψ |2, one may define an
associated ‘current’. The velocity field is then postulated to equal the current divided by the
density.

In this paper we derive currents, from which the guidance equations can be constructed,
for any Schrödinger equation such that the Hamiltonian is given by a differential operator.
More explicitly, we consider Schrödinger equations6

i∂tψ(q, t) = Ĥ (q,∇, t)ψ(q, t), (4)

where q = (q1, . . . , qN) ∈ R
N and ∇ is the N-dimensional gradient, and where Ĥ (q,∇, t)

is a differential operator, that is, a multivariate polynomial in the symbols ∂q1 , . . . , ∂qN
with

coefficients being complex-valued functions of q and t. From (4), we derive a continuity
equation for the density |ψ(q, t)|2 with a current jψ(q, t), that is,

∂t |ψ(q, t)|2 + ∇ · jψ(q, t) = 0. (5)

A possible guidance equation is then given by

dq

dt
= jψ

|ψ |2 . (6)

Of course, one can always add a divergence-free vector field to jψ(q, t) without losing the
validity of (5). However, it is standard to assume that the current vanish for |q| → +∞.

5 Note, however, that in principle the theory allows ‘nonequilibrium’ ensemble distributions, that is, distributions
that differ from |ψ |2 [8–11].
6 Here and below we take h̄ = 1.
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Note that, in the special case of one dimension (N = 1), the requirement that the current
vanishes at infinity uniquely determines the current to be

jψ(q, t) = −
∫ q

−∞
dq ′ ∂t |ψ(q ′, t)|2. (7)

Other possible currents differ only by an additive q-independent term and hence do not vanish
for |q| → +∞.

As we shall see, for a Hamiltonian that is a differential operator, we can always find a
current jψ(q) that is a local functional of the wavefunction ψ(q) (that is, a jψ(q) that can
be written as a function of q,ψ(q) and q-derivatives of ψ(q) up to some finite order). In
the uniquely determined one-dimensional case (N = 1), this implies that the expression on
the right-hand side of (7) is a local functional. On the other hand, in the multi-dimensional
case (N � 2) one can also find currents satisfying the continuity equation that are not local
functionals. Here is an example. From the Schrödinger equation (4) it follows that

∂t |ψ(q, t)|2 + Iψ(q, t) = 0, (8)

where

Iψ(q, t) ≡ 2Re(iψ∗(q, t)Ĥ (q, ∂q, t)ψ(q, t)). (9)

We can then write

Iψ(q, t) = ∇2(∇−2Iψ(q, t)) = ∇ · (∇(∇−2Iψ(x, t))), (10)

where ∇−2Iψ(q, t) = ∫
dNq ′Gn(q − q ′)Iψ(q ′, t) (assuming that the integral is well defined),

with

GN(q) =

⎧⎪⎪⎨⎪⎪⎩
1

2π
log|q|, N = 2

− �(N/2 − 1)

4πN/2|q|N−2
, N � 3

(11)

a Green’s function (a fundamental solution) for Laplace’s equation in N dimensions, that is,
∇2GN(q) = δ(q), see for example [12, pp 49–53] or [13, pp 21–25]. The current

jψ(q, t) = ∇ (∇−2Iψ(q, t)
)

(12)

then satisfies the continuity equation. This method of obtaining a current was first suggested
by Epstein [14] (for N = 3). Although a local current is arguably preferable when the
Hamiltonian is a differential operator, nonlocal currents of the type (12) could be useful
for other Hamiltonians, such as the positive-energy Klein–Gordon Hamiltonian

√−∇2 + m2

(which is defined by transforming to Fourier space).
Different choices of current lead to different guidance equations and hence to different

pilot-wave models7. Even requiring the current to be a local functional (insofar as the
Hamiltonian admits that) does not resolve the ambiguity, as again the current is determined by
the continuity equation only up to a divergence-free part. Deotto and Ghirardi [15] considered
the latter ambiguity in detail and showed that even imposing standard spacetime symmetries
still does not uniquely fix the current.

Before considering the general case of a multi-dimensional configuration space, we shall
first consider the one-dimensional case. This allows us to illustrate the techniques involved.

7 Note, however, that merely postulating a velocity field by dividing a current jψ by the density |ψ |2 might not be
sufficient to obtain a satisfactory pilot-wave model (that is, a pilot-wave model that reproduces the standard quantum
predictions).
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2. One-dimensional configuration space

Consider a Schrödinger equation

i∂tψ(q, t) = Ĥ (q, ∂q, t)ψ(q, t), (13)

where q ∈ R and where Ĥ (q, ∂q, t) is a differential operator, that is

Ĥ (q, ∂q, t)ψ(q, t) =
∑
n�0

hn(q, t)∂n
q ψ(q, t), (14)

where only a finite number of the complex-valued functions hn are nonzero. We assume that
Ĥ is Hermitian, that is, for wavefunctions ψ1 and ψ2,∫

dq ψ∗
1 Ĥψ2 =

∫
dq(Ĥψ1)

∗ψ2. (15)

From (14), the Hermiticity of Ĥ implies

Ĥ (q, ∂q, t)ψ(q, t) =
∑
n�0

(−∂q)
n(h∗

n(q, t)ψ(q, t)) (16)

(assuming that terms of the form ∂m
q (ψ1hn)∂

n−m−1
q ψ2 vanish at infinity). As shown in appendix

A, it then follows that the Hamiltonian is Hermitian if and only if the coefficients hn satisfy

hn =
∑
m�n

(−1)m
(

m

n

)
∂m−n
q h∗

m. (17)

From (13) it follows that

∂t |ψ(q, t)|2 + Iψ(q, t) = 0, (18)

where

Iψ(q, t) ≡ 2Re(iψ∗(q, t)Ĥ (q, ∂q, t)ψ(q, t)). (19)

The goal is to write Iψ(q, t) in the form ∂qj
ψ(q, t).

In section 2.1 we derive the current jψ by direct calculation. In section 2.2 we derive
it as a Noether current. We will make use of the following identity (the proof is given in
appendix A):

Identity 1. For any two wavefunctions φ(q) and χ(q), and n � 0:8

φ∂n
q χ − (−1)nχ∂n

q φ = ∂q

(
n−1∑
m=0

(−1)m∂m
q φ∂n−m−1

q χ

)
. (20)

2.1. Deriving the current from the Schrödinger equation

We have

Iψ = 2Re(iψ∗Ĥψ)

= i(ψ∗Ĥψ − ψ(Ĥψ)∗)

= i
∑
n�1

(
ψ∗hn∂

n
q ψ − (−1)nψ∂n

q (hnψ
∗)

)
, (21)

8 Here and below it is understood that a sum is 0 when the upper bound is smaller than the lower bound.
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where for Ĥψ and (Ĥψ)∗ we have used (14) and (16) respectively. Making use of identity 1
(equation (20)) for φ = ψ∗hn and χ = ψ , we can write Iψ = ∂qj

ψ , with

jψ = i
∑
n�1

n−1∑
m=0

(−1)m∂m
q (ψ∗hn)∂

n−m−1
q ψ. (22)

We can also write the current in the form

jψ =
∑

n,m�0

Jnm∂n
q ψ∂m

q ψ∗, (23)

where the coefficients

Jnm = i
∑

r�n+m+1

(−1)r+n+1

(
r − n − 1

m

)
∂r−n−m−1
q hr , n,m � 0. (24)

are completely determined by the Hamiltonian (the proof of (24) is given in appendix A).
The above current jψ is real. One way to see this is by noting that the current on the

right-hand side of (22) (which vanishes for |q| → +∞) equals that on the right-hand side
of (7), which is obviously real. For the case of a multi-dimensional configuration space,
we do not know of any simple argument that shows the reality of the obtained current.
Instead, in appendix B, we prove the reality by direct calculation, using the Hermiticity of the
Hamiltonian. Since our discussion of the one-dimensional case serves as preparation for the
multi-dimensional case, in appendix A we give a similar reality proof for the one-dimensional
case.

2.2. Deriving the current as a Noether current

In the previous section, we derived the current jψ by direct calculation from the Schrödinger
equation. In this section the same current is derived as a Noether current.

As is well known, Noether’s theorem states that, for theories that can be derived from an
action principle, each continuous symmetry implies a conserved quantity. Here the conserved
quantity is quantum probability, and the conservation law is expressed in terms of the continuity
equation. The Schrödinger equation (13) can be derived from an action, and the invariance of
the action under global phase transformations ψ → eiαψ implies the conservation of quantum
probability.

Specifically, the Schrödinger equation (13) can be derived from an action principle with
Lagrangian

L[ψ, ψ̇, ψ∗, ψ̇∗
, t] =

∫
dq

(
i

2
(ψ∗(q, t)ψ̇(q, t)

− ψ̇
∗
(q, t)ψ(q, t)) − ψ∗(q, t)Ĥ (q, ∂q, t)ψ(q, t)

)
(25)

(a functional of ψ, ψ̇, ψ∗, ψ̇∗
), where ψ̇ = ∂tψ . The Euler–Lagrange equations are given by

∂t

δL

δψ̇
− δL

δψ
= 0, ∂t

δL

δψ̇
∗ − δL

δψ∗ = 0 (26)

and just yield the Schrödinger equation and its complex conjugate.
The corresponding Lagrangian density may be taken as the function (using the Hermiticity

of Ĥ )

L(q, ψ̇(q, t), ψ̇
∗
(q, t), ψ(q, t), ψ∗(q, t), . . . , ∂n

q ψ(q, t), ∂n
q ψ∗(q, t), . . . , t)

= 1
2 (iψ∗(q, t)ψ̇(q, t) − ψ∗(q, t)Ĥ (q, ∂q, t)ψ(q, t) + c.c.) (27)

5



J. Phys. A: Math. Theor. 42 (2009) 035301 W Struyve and A Valentini

and in terms of L the Euler–Lagrange equations (26) read

∂t

∂L
∂ψ̇

−
∑
n�0

(−1)n∂n
q

∂L
∂∂n

q ψ
= 0, ∂t

∂L
∂ψ̇

∗ −
∑
n�0

(−1)n∂n
q

∂L
∂∂n

q ψ∗ = 0. (28)

Since the field-theoretical Noether theorem is usually discussed only for Lagrangian
densities that depend on up to first-order derivatives of the field, we repeat the analysis in full.
The generalization to Lagrangian densities that depend on higher order derivatives is in fact
straightforward.

If L is invariant under an infinitesimal symmetry transformation ψ → ψ + δψ,ψ∗ →
ψ∗ + δψ∗, we have δL = 0. We can write δL as

δL = ∂L
∂ψ̇

δψ̇ +
∑
n�0

∂L
∂∂n

q ψ
δ
(
∂n
q ψ

)
+ c.c.

= ∂t

(
∂L
∂ψ̇

δψ

)
− ∂t

∂L
∂ψ̇

δψ +
∑
n�0

∂L
∂∂n

q ψ
∂n
q (δψ) + c.c.

= ∂t

(
∂L
∂ψ̇

δψ

)
+

∑
n�0

(
∂L

∂∂n
q ψ

∂n
q (δψ) − (−1)n∂n

q

(
∂L

∂∂n
q ψ

)
δψ

)
+ c.c., (29)

where in the last line we have used the Euler–Lagrange equations. Using identity 1
(equation (20)) in the second term on the right-hand side, with φ = ∂L/∂∂n

q ψ and χ = δψ ,
we obtain

0 = δL = ∂t

(
∂L
∂ψ̇

δψ

)
+ ∂q

⎛⎝∑
n�1

n−1∑
m=0

(−1)m∂m
q

(
∂L

∂∂n
q ψ

)
∂n−m−1
q (δψ)

⎞⎠ + c.c. (30)

and hence we obtain a conserved ‘two-current’, with density

ρψ = ∂L
∂ψ̇

δψ + c.c. (31)

and ‘spatial’ current

jψ =
∑
n�1

n−1∑
m=0

(−1)m∂m
q

(
∂L

∂∂n
q ψ

)
∂n−m−1
q (δψ) + c.c. (32)

(where (ρψ, jψ) is determined up to an additive term with vanishing 2-divergence).
The current associated with the global phase symmetry ψ → ψ − iεψ,ψ∗ → ψ∗ + iεψ∗

is then given by

ρψ = ε|ψ |2, (33)

jψ = 2Re

⎡⎣−iε
∑
n�1

n−1∑
m=0

(−1)m∂m
q

(
∂L

∂∂n
q ψ

)
∂n−m−1
q ψ

⎤⎦ . (34)

Since
∂L

∂∂n
q ψ

= −1

2
ψ∗ ∂(Ĥψ)

∂∂n
q ψ

, (35)

for n � 1, current (34) can also be written as

jψ = Re

⎡⎣iε
∑
n�1

n−1∑
m=0

(−1)m∂m
q

(
ψ∗ ∂(Ĥψ)

∂∂n
q ψ

)
∂n−m−1
q ψ

⎤⎦ . (36)

6
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Using ∂(Ĥψ)/∂∂n
q ψ = hn, the expression in square brackets agrees with the right-hand side

of (22), up to the constant factor ε. It, therefore, also follows that taking the real part in
equations (34) and (36) is redundant, as the argument of Re in these expressions is already
real.

3. N-dimensional configuration space

We now turn to the case of an N-dimensional configuration space, with points q =
(q1, . . . , qN) ∈ R

N . We shall use multi-indices, which are elements of N
N
0 , that is, we use an

index n = (n1, . . . , nN) ∈ N
N
0 . We define ei ∈ N

N
0 , for i = 1, . . . , N , as (ei)j = δij (j =

1, . . . , N). We also define 0 ∈ N
N
0 as the element 0 = (0, . . . , 0). We further assume the

following standard definitions:

n ± n′ = (n1 ± n′
1, . . . , nN ± n′

N),

n � n′ if ni � n′
i , i = 1, . . . , N,

n < n′ if n � n′ and n 
= n′,

|n| =
N∑

i=1

ni,

n! =
N∏

i=1

(ni!),

Dn = ∂n1
q1

· · · ∂nN

qN
,(

n

n′

)
=

(
n1

n′
1

)
· · ·

(
nN

n′
N

)
,

(37)

where n, n′ ∈ N
N
0 .

Consider a Schrödinger equation

i∂tψ(q, t) = Ĥ (q,D, t)ψ(q, t), (38)

where Ĥ (q,D, t) is a differential operator, that is

Ĥ (q,D, t)ψ(q, t) =
∑
n�0

hn(q, t)Dnψ(q, t), (39)

where only a finite number of the complex-valued functions hn are nonzero. From (39), the
Hermiticity of Ĥ now implies

Ĥ (q,D, t)ψ(q, t) =
∑
n�0

(−1)|n|Dn(h∗
n(q, t)ψ(q, t)) (40)

(assuming that terms of the form Dm(ψ1hn)D
n−m−ei ψ2, for wavefunctions ψ1 and ψ2, vanish

at infinity). As shown in appendix B, it then follows that the Hamiltonian is Hermitian if and
only if the coefficients hn satisfy

hn =
∑
m�n

(−1)|m|
(

m

n

)
Dm−nh∗

m. (41)

From (38) it follows that

∂t |ψ(q, t)|2 + Iψ(q, t) = 0, (42)

7
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where

Iψ(q, t) ≡ 2Re(iψ∗(q, t)Ĥ (q,D, t)ψ(q, t)). (43)

The goal is to write Iψ(q, t) in the form
∑N

i=1 Dei j
ψ

i (q, t).
In section 3.1 we derive a current jψ(q) by direct calculation. In section 3.2 we derive

it as a Noether current. We will make use of the following identity (the proof is given in
appendix B):

Identity 2. For any two wavefunctions φ(q) and χ(q), and n � 0:

φDnχ − (−1)|n|χDnφ

=
N∑

i=1

Dei

⎛⎝ ∑
0�m�n−ei

(−1)|m| n!

|n|!
|m|!
m!

|n − m − ei |!
(n − m − ei)!

DmφDn−m−ei χ

⎞⎠ . (44)

3.1. Deriving the current from the Schrödinger equation

We have

Iψ = 2Re(iψ∗Ĥψ)

= i(ψ∗Ĥψ − ψ(Ĥψ)∗)

= i
∑
n>0

(ψ∗hnD
nψ − (−1)|n|ψDn(hnψ

∗)), (45)

where for Ĥψ and (Ĥψ)∗ we have used (39) and (40) respectively. Making use of identity 2
(equation (44)) for φ = ψ∗hn and χ = ψ , we can write Iψ = ∑N

i=1 Dei j
ψ

i , with

j
ψ

i = i
∑
n�ei

∑
0�m�n−ei

(−1)|m| n!

|n|!
|m|!
m!

|n − m − ei |!
(n − m − ei)!

Dm(ψ∗hn)D
n−m−ei ψ. (46)

(up to a divergence-free term). In appendix B we prove that this current is real.
We can also write the current in the form

j
ψ

i =
∑

n,m�0

Ji,nmDnψDmψ∗, (47)

where the coefficients

Ji,nm = i
∑

r�n+m+ei

(−1)|r+n|+1 r!

|r|!
|r − n − ei |!
(r − n − ei)!

|n|!
n!

(
r − n − ei

m

)
Dr−n−m−ei hr , (48)

with n,m � 0, are completely determined by the Hamiltonian (the proof of (48) is given in
appendix B).

3.2. Deriving the current as a Noether current

The current can also be derived as a Noether current associated with the global phase symmetry
of the Lagrangian

L[ψ, ψ̇, ψ∗, ψ̇∗
, t] =

∫
dNq

(
i

2
(ψ∗ψ̇ − ψ̇

∗
ψ) − ψ∗Ĥψ

)
, (49)

where ψ̇ = ∂tψ . The Euler–Lagrange equations are given by

∂t

δL

δψ̇
− δL

δψ
= 0, ∂t

δL

δψ̇
∗ − δL

δψ∗ = 0, (50)

which yield the Schrödinger equation (38) and its complex conjugate.

8
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The corresponding Lagrangian density may be taken as the function

L = 1
2 (i(ψ∗ψ̇ − ψ̇

∗
ψ) − ψ∗Ĥψ − (Ĥψ)∗ψ). (51)

In terms of L, the Euler–Lagrange equations (50) read

∂t

∂L
∂ψ̇

−
∑
n�0

(−1)|n|Dn ∂L
∂Dnψ

= 0, ∂t

∂L
∂ψ̇

∗ −
∑
n�0

(−1)|n|Dn ∂L
∂Dnψ∗ = 0. (52)

If L is invariant under an infinitesimal symmetry transformation ψ → ψ + δψ,ψ∗ →
ψ∗ + δψ∗, we have δL = 0. We can write δL as

δL = ∂L
∂ψ̇

δψ̇ +
∑
n�0

∂L
∂Dnψ

δ(Dnψ) + c.c.

= ∂t

(
∂L
∂ψ̇

δψ

)
− ∂t

∂L
∂ψ̇

δψ +
∑
n�0

∂L
∂Dnψ

Dn(δψ) + c.c.

= ∂t

(
∂L
∂ψ̇

δψ

)
+

∑
n�0

(
∂L

∂Dnψ
Dn(δψ) − (−1)|n|Dn

(
∂L

∂Dnψ

)
δψ

)
+ c.c., (53)

where in the last line we have used the Euler–Lagrange equations. Using identity 2
(equation (44)) in the second term on the right-hand side, with φ = ∂L/∂Dnψ and χ = δψ ,
we obtain

0 = δL = ∂t

(
∂L
∂ψ̇

δψ

)
+

N∑
i=1

Dei

( ∑
n�ei

∑
0�m�n−ei

(−1)|m|

× n!

|n|!
|m|!
m!

|n − m − ei |!
(n − m − ei)!

Dm

(
∂L

∂Dnψ

)
Dn−m−ei δψ

)
+ c.c. (54)

and hence we obtain a conserved ‘(N + 1)-current’ (up to an arbitrary additive term with
vanishing (N + 1)-divergence), with density

ρψ = ∂L
∂ψ̇

δψ + c.c. (55)

and ‘spatial’ currents

j
ψ

i =
∑
n�ei

∑
0�m�n−ei

(−1)|m| n!

|n|!
|m|!
m!

|n − m − ei |!
(n − m − ei)!

Dm

(
∂L

∂Dnψ

)
Dn−m−ei δψ + c.c.. (56)

The current associated with the global phase symmetry ψ → ψ − iεψ,ψ∗ → ψ∗ + iεψ∗

is then given by

ρψ = ε|ψ |2, (57)

j
ψ

i = 2Re

[
−iε

∑
n�ei

∑
0�m�n−ei

(−1)|m| n!

|n|!
|m|!
m!

|n − m − ei |!
(n − m − ei)!

Dm

(
∂L

∂Dnψ

)
Dn−m−ei ψ

]
.

(58)

Since

∂L
∂Dnψ

= −1

2
ψ∗ ∂(Ĥψ)

∂Dnψ
, (59)

9
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for n > 0, current (58) can also be written as

j
ψ

i = Re

[
iε

∑
n�ei

∑
0�m�n−ei

(−1)|m|

× n!

|n|!
|m|!
m!

|n − m − ei |!
(n − m − ei)!

Dm

(
ψ∗ ∂(Ĥψ)

∂Dnψ

)
Dn−m−ei ψ

]
. (60)

Using ∂(Ĥψ)/∂Dnψ = hn, the expression in square brackets agrees with the right-hand
side of (46), up to the constant factor ε. It therefore also follows that taking the real part in
equations (58) and (60) is again redundant as the argument of Re in these expressions is already
real.

4. Comparison with related work

The construction of quantum probability currents and associated guidance equations, for
certain classes of operators, has been considered before by a number of authors, in particular
Brown and Hiley [16, 17], Dürr et al [18, 19] and Gambetta and Wiseman [20]9.

4.1. Brown and Hiley

Brown and Hiley consider one-dimensional Hamiltonians of the form

Ĥ =
∑
m,n

hmnq̂
mp̂n, (61)

where the hmn are constant and p̂ is the momentum operator conjugate to q̂. In the configuration
representation, where 〈q |̂q|q ′〉 = qδ(q − q ′), 〈q |̂p|q ′〉 = −i∂qδ(q − q ′), the Hamiltonian
operator is given by

〈q|Ĥ |q ′〉 = Ĥ (q, ∂q)δ(q − q ′) =
∑
m,n

hmnq
m(−i∂q)

nδ(q − q ′), (62)

which corresponds to a Hamiltonian of the form (14) with hn = ∑
m hmnq

m(−i)n.
They find a current that can be written in the compact form

jψ(q, t) = 〈q|∂p̂(̂ρ(t)Ĥ )|q〉, (63)

where ρ̂(t) = |ψ(t)〉〈ψ(t)| is the density operator, and ∂p̂ is the symbolic differential operator
of Born and Jordan [16, 17, 22], which acts on ρ̂q̂mp̂n as

∂p̂(̂ρq̂mp̂n) =
n∑

k=1

p̂n−kρ̂q̂mp̂k−1, (64)

and whose action is extended to ρ̂Ĥ by linearity. It can easily be shown that, in its domain of
validity, this current coincides with that given in (22).

It is straightforward to verify that Brown and Hiley’s expression for the current also
applies to Hamiltonians of the form

Ĥ =
∑

n

ĝn(q, t)p̂n, (65)

9 Stone [21] considers Hamiltonians of the form (14) where the hn are constant. Instead of writing the guidance
equation in terms of derivatives of ψ and ψ∗, Stone attempts to write it in terms of the real and imaginary parts
of (i∂q)nψ/ψ . However, Stone’s expression for the guidance equation appears to be incorrect. While it is rather
straightforward to rewrite the guidance equation in terms of Stone’s variables, this does not seem particularly useful.
Therefore, we do not present it here.

10
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where 〈q |̂gn(q, t)|q ′〉 = gn(q, t)δ(q − q ′), and which correspond to Hamiltonians Ĥ (q, ∂q, t)

of the form given in (14) with hn = gn(−i)n. (The Born–Jordan derivative acts on ρ̂ĝn(q, t)p̂n

in the same way as on ρ̂q̂mp̂n, replacing q̂m by ĝn(q, t) in (64).)
While we have not investigated this further, a similar form can probably be obtained in

the case of a multi-dimensional configuration space.

4.2. Dürr et al, Gambetta and Wiseman

Dürr et al [18, 19] and, independently, Gambetta and Wiseman [20] consider multi-dimensional
Hamiltonians of up to second order in the momenta, that is, Hamiltonians of the form (we
follow a notation similar to that of Gambetta and Wiseman)

Ĥ =
∑
i,j

âij p̂i p̂j +
∑

i

b̂i p̂i + ĉ, (66)

where âij , b̂i , ĉ are arbitrary time-dependent functions of the q̂i . In the configuration
representation, these correspond to Hamiltonians of the form (39) with the hn zero for |n| > 2.

They find a current that can be written as

j
ψ

i (q, t) = Re(〈ψ(t)|q〉〈q |̂vi(t)|ψ(t)〉) = Re〈q |̂vi(t )̂ρ(t)|q〉, (67)

where v̂k = i[Ĥ , q̂k] is the velocity operator. This expression for the current is not valid for
Hamiltonians containing higher order terms in the momentum operators, corresponding to
some nonzero hn for |n| > 2. However, in its domain of validity, it can easily be shown to
coincide with the current given in (46).

5. Conclusion

We have presented de Broglie–Bohm guidance equations for any Schrödinger equation such
that the Hamiltonian is given by a differential operator. These results may be applied to the
development of possible pilot-wave interpretations for quantum theories with a Schrödinger
time evolution. While we have considered only finite-dimensional configuration spaces, the
equations carry over—at least formally—to field-configuration spaces. Thus, the work can
also be applied to the development of pilot-wave interpretations for quantum field theories, in
terms of field ontologies.
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Appendix A. Proofs for a one-dimensional configuration space

Proof of the Hermiticity condition (17). From (16), and using Leibniz’ rule, we have

Ĥ (q, ∂q, t)ψ(q, t) =
∑
n�0

n∑
m=0

(−1)n
(

n

m

)
∂n−m
q h∗

n(q, t)∂m
q ψ(q, t). (A.1)

11
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Using the identity
∑

n�0

∑n
m=0 fnm = ∑

n�0

∑
m�n fmn we have

Ĥ (q, ∂q, t)ψ(q, t) =
∑
n�0

∑
m�n

(−1)m
(

m

n

)
∂m−n
q h∗

m(q, t)∂n
q ψ(q, t). (A.2)

Comparing this expression with (14) gives

hn =
∑
m�n

(−1)m
(

m

n

)
∂m−n
q h∗

m. (A.3)

Conversely, condition (A.3) implies that
∑

n�0 hn(q, t)∂n
q ψ(q, t) = ∑

n�0(−∂q)
n

(h∗
n(q, t)ψ(q, t)) so that the Hamiltonian is Hermitian. �

Proof of identity (1). The identity is proved by working out the right-hand side of
equation (20):

∂q

(
n−1∑
m=0

(−1)m∂m
q φ∂n−m−1

q χ

)
=

n−1∑
m=0

(−1)m
(
∂m+1
q φ∂n−m−1

q χ + ∂m
q φ∂n−m

q χ
)
. (A.4)

Using the identities
n−1∑
m=0

(−1)m∂m+1
q φ∂n−m−1

q χ =
n−2∑
m=0

(−1)m∂m+1
q φ∂n−m−1

q χ − (−1)nχ∂n
q φ (A.5)

and
n−1∑
m=0

(−1)m∂m
q φ∂n−m

q χ =
n−2∑

m=−1

(−1)m+1∂m+1
q φ∂n−m−1

q χ

= −
n−2∑
m=0

(−1)m∂m+1
q φ∂n−m−1

q χ + φ∂n
q χ, (A.6)

we find that (A.4) becomes φ∂n
q χ − (−1)nχ∂n

q φ, which is the left-hand side of equation (20).
�

Proof of equation (24). Regarding jψ as a function of the variables ∂n
q ψ∂m

q ψ∗, we have that
Jnm = ∂jψ

/
∂
(
∂n
q ψ∂m

q ψ∗). To calculate ∂jψ
/
∂
(
∂n
q ψ∂m

q ψ∗), we first use Leibniz’ rule to write

jψ = i
∑
r�1

r−1∑
s=0

(−1)s∂s
q(ψ

∗hr)∂
r−s−1
q ψ

= i
∑
r�1

r−1∑
s=0

s∑
t=0

(−1)s
(

s

t

)
∂t
qψ

∗∂s−t
q hr∂

r−s−1
q ψ. (A.7)

We then have

∂jψ

∂
(
∂n
q ψ∂m

q ψ∗) = i
∑
r�1

r−1∑
s=0

s∑
t=0

(−1)s
(

s

t

)
∂s−t
q hrδn,r−s−1δm,t

= i
∑

r�m+1

r−1∑
s=m

(−1)s
(

s

m

)
∂s−m
q hrδn,r−s−1

= i
∑

r�n+m+1

(−1)r+n+1

(
r − n − 1

m

)
∂r−n−m−1
q hr . (A.8)

�
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Proof that the current jψ given by (22) is real. The proof is best given by starting from the
form (23) of the current. The current is real if and only if Jnm = J ∗

mn (for all n,m � 0).
Before proving the latter, we first show that

r∑
s=n+m+1

(−1)s
(s − n − 1)!

s!

(
r − n − m − 1

r − s

)
= (−1)n+m+1 m!(r − m − 1)!

r!n!
, (A.9)

for r � n + m + 1, with r, n,m ∈ N. We prove this by induction on l = r − n − m − 1 � 0.
For l = 0, we have that both sides of equation (A.9) are equal to (−1)rm!/r!. Suppose now
l > 0 and suppose the identity holds for all smaller values of l. Using the identity(

r − n − m − 1

r − s

)
=

(
r − n − m − 2

r − s

)
+

(
r − n − m − 2

r − s − 1

)
, (A.10)

which is valid for any r, n,m and s [23, p 174]10, the sum on the left-hand side of (A.9)
decomposes into two sums, which we call S1 and S2. Let us first consider

S1 =
r∑

s=n+m+1

(−1)s
(s − n − 1)!

s!

(
r − n − m − 2

r − s

)
. (A.12)

Since
(
r−n−m−2

r−s

) = 0 for s = n + m + 1 and r − n − m − 1 > 0, we have

S1 =
r∑

s=n+m+2

(−1)s
(s − n − 1)!

s!

(
r − n − m − 2

r − s

)
. (A.13)

Applying the induction hypothesis, we find

S1 = (−1)n+m (m + 1)!(r − m − 2)!

r!n!
. (A.14)

Similarly, we have

S2 =
r∑

s=n+m+1

(−1)s
(s − n − 1)!

s!

(
r − n − m − 2

r − s − 1

)

=
r−1∑

s=n+m+1

(−1)s
(s − n − 1)!

s!

(
r − n − m − 2

r − s − 1

)
= (−1)n+m+1 m!(r − m − 2)!

(r − 1)!n!
. (A.15)

Combining these results, we find that the left-hand side of equation (A.9) equals

S1 + S2 = (−1)n+m+1 m!(r − m − 1)!

r!n!

(
− m + 1

r − m − 1
+

r

r − m − 1

)
= (−1)n+m+1 m!(r − m − 1)!

r!n!
, (A.16)

which is equal to the right-hand side of (A.9). This completes the proof of identity (A.9).

10 We use the definition of binomial coefficients in [23, p 154], which reads

(
n

m

)
=

⎧⎪⎨⎪⎩
n(n−1)···(n−m+1)

m(m−1)···1 , m > 0

1, m = 0
0, m < 0

(A.11)

for integer n,m.
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Consider now

Jnm = i
∑

r�n+m+1

(−1)r+n+1

(
r − n − 1

m

)
∂r−n−m−1
q hr . (A.17)

Using respectively the Hermiticity condition (17), identity
∑

r�n+m+1

∑
s�r frs =∑

r�n+m+1

∑r
s=n+m+1 fsr , the factorial form of the binomials, and the identity (A.9), we find

Jnm = i
∑

r�n+m+1

∑
s�r

(−1)r+n+s+1

(
r − n − 1

m

)(
s

r

)
∂s−n−m−1
q h∗

s

= i
∑

r�n+m+1

r∑
s=n+m+1

(−1)r+n+s+1

(
s − n − 1

m

)(
r

s

)
∂r−n−m−1
q h∗

r

= i
∑

r�n+m+1

(−1)r+n+1 r!

m!(r − n − m − 1)!
∂r−n−m−1
q h∗

r

×
r∑

s=n+m+1

(−1)s
(s − n − 1)!

s!

(
r − n − m − 1

r − s

)
= i

∑
r�n+m+1

(−1)r+m

(
r − m − 1

n

)
∂r−n−m−1
q h∗

r

= J ∗
mn. (A.18)

�

Appendix B. Proofs for an N-dimensional configuration space

Proof of the Hermiticity condition (41). From (40), and using Leibniz’ rule, we have

Ĥ (q,D, t)ψ(q, t) =
∑
n�0

∑
0�m�n

(−1)|n|
(

n

m

)
Dn−mh∗

n(q, t)Dmψ(q, t). (B.1)

Using the identity
∑

n�0

∑
0�m�n fnm = ∑

n�0

∑
m�n fmn we have

Ĥ (q,D, t)ψ(q, t) =
∑
n�0

∑
m�n

(−1)|m|
(

m

n

)
Dm−nh∗

m(q, t)Dnψ(q, t). (B.2)

Comparing this expression with (39) gives

hn =
∑
m�n

(−1)|m|
(

m

n

)
Dm−nh∗

m. (B.3)

Conversely, condition (B.3) implies that∑
n�0

hn(q, t)Dnψ(q, t) =
∑
n�0

(−1)|n|Dnh∗
n(q, t)ψ(q, t), (B.4)

so that the Hamiltonian is Hermitian. �
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Proof of identity (2). The identity is proved by working out the right-hand side of (44):

N∑
i=1

Dei

⎛⎝ ∑
0�m�n−ei

(−1)|m| n!

|n|!
|m|!
m!

|n − m − ei |!
(n − m − ei)!

DmφDn−m−ei χ

⎞⎠
=

N∑
i=1

∑
0�m�n−ei

(−1)|m| n!

|n|!
|m|!
m!

|n − m − ei |!
(n − m − ei)!

(Dm+ei φDn−m−ei χ + DmφDn−mχ).

(B.5)

We can write∑
0�m�n−ei

(−1)|m| |m|!
m!

|n − m − ei |!
(n − m − ei)!

Dm+ei φDn−m−ei χ

=
∑

ei�m�n

(−1)|m−ei | |m − ei |!
(m − ei)!

|n − m|!
(n − m)!

DmφDn−mχ

=
∑

ei�m�n

(−1)|m|+1 |m|!
m!

|n − m|!
(n − m)!

mi

|m|D
mφDn−mχ

=
∑

0<m�n

(−1)|m|+1 |m|!
m!

|n − m|!
(n − m)!

mi

|m|D
mφDn−mχ

=
∑

0<m<n

(−1)|m|+1 |m|!
m!

|n − m|!
(n − m)!

mi

|m|D
mφDn−mχ − (−1)|n| |n|!

n!

ni

|n|D
nφχ. (B.6)

(We can extend the range of the sum in the second-last line, because the terms with mi = 0
are zero.) Similarly, we can write∑
0�m�n−ei

(−1)|m| |m|!
m!

|n − m − ei |!
(n − m − ei)!

DmφDn−mχ

=
∑

0�m�n−ei

(−1)|m| |m|!
m!

|n − m|!
(n − m)!

(ni − mi)

|n − m| DmφDn−mχ

=
∑

0�m<n

(−1)|m| |m|!
m!

|n − m|!
(n − m)!

(ni − mi)

|n − m| DmφDn−mχ

=
∑

0<m<n

(−1)|m| |m|!
m!

|n − m|!
(n − m)!

(ni − mi)

|n − m| DmφDn−mχ +
|n|!
n!

ni

|n|φDnχ. (B.7)

Using (B.5), (B.6) and (B.7), the right-hand side of (44) becomes

φDnχ − (−1)|n|χDnφ +
N∑

i=1

∑
0<m<n

(−1)|m|

× n!

|n|!
|m|!
m!

|n − m|!
(n − m)!

(
(ni − mi)

|n − m| − mi

|m|
)

DmφDn−mχ. (B.8)

Using

N∑
i=1

(
(ni − mi)

|n − m| − mi

|m|
)

= 0, (B.9)

(B.8) is equal to φDnχ − (−1)|n|χDnφ, which is just the left-hand side of (44). �
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Proof of equation (48). Regarding the j
ψ

i as functions of the variables DnψDmψ∗, we have
that Ji,nm = ∂j

ψ

i

/
∂
(
DnψDmψ∗). To calculate ∂j

ψ

i

/
∂
(
DnψDmψ∗), we first use Leibniz’

rule to write

j
ψ

i = i
∑
r�ei

∑
0�s�r−ei

(−1)|s|
r!

|r|!
|s|!
s!

|r − s − ei |!
(r − s − ei)!

Ds(ψ∗hr)D
r−s−ei ψ

= i
∑
r�ei

∑
0�s�r−ei

∑
0�t�s

(−1)|s|
r!

|r|!
|s|!
s!

|r − s − ei |!
(r − s − ei)!

(
s

t

)
Dtψ∗Ds−t hrD

r−s−ei ψ. (B.10)

We then have

∂j
ψ

i

∂(DnψDmψ∗)
= i

∑
r�ei

∑
0�s�r−ei

∑
0�t�s

(−1)|s|
r!

|r|!
|s|!
s!

|r − s − ei |!
(r − s − ei)!

(
s

t

)
Ds−t hrδn,r−s−ei

δm,t

= i
∑

r�m+ei

∑
m�s�r−ei

(−1)|s|
r!

|r|!
|s|!
s!

|r − s − ei |!
(r − s − ei)!

(
s

m

)
Ds−mhrδn,r−s−ei

= i
∑

r�n+m+ei

(−1)|r+n|+1 r!

|r|!
|r − n − ei |!
(r − n − ei)!

|n|!
n!

(
r − n − ei

m

)
Dr−n−m−ei hr .

(B.11)

�

Proof that the currents j
ψ

i given by (46) are real. The proof is best given by starting from the
form (47) of the currents. The currents are real if and only if Ji,nm = J ∗

i,mn (for all n,m � 0).
Before proving the latter, we first show that∑

n+m+ei�s�r

(−1)|s|
|s − n − ei |!

|s|!
(

r − n − m − ei

r − s

)
= (−1)|n+m|+1 |m|!|r − m − ei |!

|r|!|n|! , (B.12)

for r � n + m + ei , with r, n,m ∈ N
N
0 . We prove this by induction on l = r − n − m − ei � 0.

For l = 0, we have that both sides of equation (B.12) are equal to (−1)|r||m|!/|r|!. Suppose
now l > 0 and suppose the identity holds for all smaller values of l. Since l > 0, there exists
a j ∈ {1, . . . , N} such that l − ej = r − n − m − ei − ej � 0. Using the identity(

r − n − m − ei

r − s

)
=

(
r − n − m − ei − ej

r − s

)
+

(
r − n − m − ei − ej

r − s − ej

)
, (B.13)

which is valid for any r, n,m and s [23], p 174], the sum on the left-hand side of (B.12)
decomposes into two sums, which we call S1 and S2. Let us first consider

S1 =
∑

n+m+ei�s�r

(−1)|s|
|s − n − ei |!

|s|!
(

r − n − m − ei − ej

r − s

)
. (B.14)

Since
(
r−n−m−ei−ej

r−s

) = 0 for sj = nj + mj + δij and r − n − m − ei − ej � 0, we have

S1 =
∑

n+m+ei+ej �s�r

(−1)|s|
|s − n − ei |!

|s|!
(

r − n − m − ei − ej

r − s

)
. (B.15)

Applying the induction hypothesis, we find

S1 = (−1)|n+m| |m + ej |!|r − m − ei − ej |!
|r|!|n|! . (B.16)
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Similarly, we have

S2 =
∑

n+m+ei�s�r

(−1)|s|
|s − n − ei |!

|s|!
(

r − n − m − ei − ej

r − s − ej

)

=
∑

n+m+ei�s�r−ej

(−1)|s|
|s − n − ei |!

|s|!
(

r − n − m − ei − ej

r − s − ej

)

= (−1)|n+m|+1 |m|!|r − m − ei − ej |!
|r − ej |!|n|! . (B.17)

Combining these results, we find that the left-hand side of equation (B.12) equals

S1 + S2 = (−1)|n+m|+1 |m|!|r − m − ei |!
|r|!|n|!

(
− |m + ej |

|r − m − ei | +
|r|

|r − m − ei |
)

= (−1)|n+m|+1 |m|!|r − m − ei |!
|r|!|n|! , (B.18)

which is equal to the right-hand side of (B.12). This completes the proof of identity (B.12).
Consider now

Ji,nm = i
∑

r�n+m+ei

(−1)|r+n|+1 r!

|r|!
|r − n − ei |!
(r − n − ei)!

|n|!
n!

(
r − n − ei

m

)
Dr−n−m−ei hr . (B.19)

Using respectively the Hermiticity condition (41), the identity
∑

r�n+m+ei

∑
s�r frs =∑

r�n+m+ei

∑
n+m+ei�s�r fsr , the factorial form of the binomials and identity (B.12), we find

Ji,nm = i
∑

r�n+m+ei

∑
s�r

(−1)|r+n+s|+1 r!

|r|!
|r − n − ei |!
(r − n − ei)!

|n|!
n!

(
r − n − ei

m

)(
s

r

)
Ds−n−m−ei h∗

s

= i
∑

r�n+m+ei

∑
n+m+ei�s�r

(−1)|r+n+s|+1

× s!

|s|!
|s − n − ei |!
(s − n − ei)!

|n|!
n!

(
s − n − ei

m

)(
r

s

)
Dr−n−m−ei h∗

r

= i
∑

r�n+m+ei

(−1)|r+n|+1 |n|!r!

n!m!(r − n − m − ei)!
Dr−n−m−ei h∗

r

×
∑

n+m+ei�s�r

(−1)|s|
|s − n − ei |!

|s|!
(

r − n − m − ei

r − s

)

= i
∑

r�n+m+ei

(−1)|r+m| r!

|r|!
|r − m − ei |!
(r − m − ei)!

|m|!
m!

(
r − m − ei

n

)
Dr−n−m−ei h∗

r

= J ∗
i,mn. (B.20)

�
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